AkijiYamamotoYAMAMOTO.Akiji@nims.go.jp National Institute for Materials Science, Tsukuba, Ibaraki, 305, Japan

Wyckoff positions of Space groups for Dihedral quasicrystals II Dodecagonal groups

Wyckoff positions of dodecagonal space groups are given.

Abstract: Wyckoff positions of five-dimensional dodecagonal space groups are calculated to facilitate the model building and structure analysis of quasicrystals. There are 23 (6 centrosymmetric and 17 non-centrosymmetric) space groups. The orbit of Wyckoff positions are available in the web site (http://wcp-ap.eng.hokudai.ac.jp/yamamoto/)

1 Introduction

Dodecagonal quasicrystals (ddQCs) are found in alloys, tellurides and soft matters with differenct scale.[7, 2, 3, 5, 8, 6] They are related with the dodecagonal tiling.[4] In particular triangle-square tiling appear frequently. This has a fractal occupation domains.[1, 10] This simple structure is generated by a fractal OD located at the origin. However, in more complicated structures, ODs may be located at several different Wyckoff positions. In general, the quasi-peiodic arrangement of atom clusters leads to a complecated model consisting of several ODs at different Wyckoff positions. For example, in tantalum tellurides, atom positions are generated by occupation domains which are located at several different Wyckoff positions.[10] All dodecagonal spacegroups are known[9] but their Wyckoff positions are not shown. Therefore, a table of Wyckoff positions will facilitate the modeling of such quasicrystals. In this paper, Wyckoff positions of 5D dodecagonal space groups are shown.

2 Calculation Method

The program Carat implemented in the program package GAP is applied to the dodecagonal space groups. This requires only the matrix representation of the point group and calculates the normalizer for classifies the generated space groups. All the possible space groups in dodecagonal quasicrystals are known and tabulated.[9] However, the known tables are calculated in a different equivalence conditions, where the scaling transformations of the dodecagonal lattice is not taken into account. As a result, the classification is finer than that in the present paper. (The known tables includes more space groups than those in the present paper as discussed later.)

3 Discussion


Table 1: The generators of the dodecagonal space groups (excluding those for lattice translations) employed in Tables 2-7. [R12y,z,u,−x+z,v, R21≡ σyx,yu,xz,−u,−vz=x,y,z,u,−v, I≡ −x,−y,−z,−u,−v, τ0=(0,0,0,0,0),τ1=(0,0,0,0,1)/2, τ2=(0,0,0,0,1)/12, τ3=(0,0,0,0,1)/6, τ4=(0,0,0,0,1)/4, τ5=(0,0,0,0,1)/3] Note that P12122(12522) is equivalent to P12322(12522) and P12222(12522) to P12422(12522) since they are related by the scaling transformation of the decagonal lattice.
Space groupgenerators
P12/mmm(1251mm){R120},{R210},{I0}
P12/mmc(1251mm){R120},{R211},{I0}
P126/mmm(1251mm){R121},{R210},{I0}
P12mm(125mm){R120},{R210},{I0}
P12mc(125mm){R120},{R211},{I0}
P126mm(125mm){R121},{R210},{I0}
P12 22(125mm){R120},{R210}
P12122(125mm){R122},{R210}
P12222(125mm){R123},{R210}
P12322(125mm){R124},{R210}
P12422(125mm){R125},{R210}
P12622(125mm){R121},{R210}
P12/m(1251){R120},{σz0}
P126/m(1251){R120},{σz0}
P12(125){R120}
P121(125){R122}
P122(125){R123}
P123(125){R124}
P124(125){R125}
P126(125){R121}
P122m(1211mm){IR120},{R210}
P122c(1211mm){IR120},{R211}
P12(1211){IR120}


Table 2: Wyckoff positions of P12/mmm(1251mm)
W.S.site symmetrycoordinates
1axxx(0,0,0,0,0)
1bxxx(0,0,0,0,1/2)
3axxx(0,1/2,1/2,0,0)
3bxxx(0,1/2,1/2,0,1/2)
4axxx(1/3,2/3,2/3,1/3,0)
4bxxx(1/3,2/3,2/3,1/3,1/2)
4cxxx(0,2/3,0,1/3,0)
4dxxx(0,2/3,0,1/3,1/2)
6axxx(0,1/2,0,0,0)
6bxxx(0,1/2,0,0,1/2)
6cxxx(1/2,0,0,1/2,0)
6dxxx(1/2,0,0,1/2,1/2)
2axxx(0,0,0,0,x)
6exxx(0,1/2,1/2,0,x)
8axxx(0,2/3,0,1/3,x)
8bxxx(1/3,2/3,2/3,1/3,x)
12axxx(1/2,0,0,1/2,x)
12bxxx(0,1/2,0,0,x)
12cxxx(0,x,y,0,0)
12dxxx(0,x,y,0,1/2)
12exxx(x,y,y,x,0)
12fxxx(x,y,y,x,1/2)
24axxx(x,y,y,x,z)
24bxxx(0,x,y,0,z)
24cxxx(x,y,z,u,0)
24dxxx(x,y,z,u,1/2)
48axxx(x,y,z,u,v)


Table 3: Wyckoff positions of P12/mmc(1251mm)
W.S.site symmetrycoordinates
2axxx(0,0,0,0,1/4)
2bxxx(0,0,0,0,0)
6axxx(0,1/2,1/2,0,1/4)
6bxxx(1/2,0,1/2,1/2,0)
8axxx(1/3,2/3,2/3,1/3,1/4)
8bxxx(0,2/3,0,1/3,0)
8cxxx(2/3,2/3,1/3,1/3,0)
8dxxx(0,2/3,0,1/3,1/4)
12axxx(0,0,0,1/2,0)
12bxxx(0,0,1/2,1/2,0)
12cxxx(1/2,0,0,1/2,1/4)
12dxxx(0,1/2,0,0,1/4)
4axxx(0,0,0,0,x)
12exxx(1/2,0,1/2,1/2,x)
16axxx(0,2/3,0,1/3,x)
16bxxx(2/3,2/3,1/3,1/3,x)
24axxx(0,0,0,1/2,x)
24bxxx(0,0,1/2,1/2,x)
24cxxx(0,x,y,0,1/4)
24dxxx(x,y,y,x,1/4)
24exxx(x,y,z,u,0)
48axxx(x,y,z,u,v)
48bxxx(x,y,z,u,v)
48cxxx(x,y,z,u,v)


Table 4: Wyckoff positions of P126/mcm(1251mm)
W.S.site symmetrycoordinates
2axxx(0,0,0,0,1/2)
2bxxx(0,0,0,0,1/4)
4axxx(0,2/3,0,1/3,1/2)
4bxxx(0,2/3,0,1/3,0)
6axxx(0,1/2,0,0,1/2)
6bxxx(0,1/2,0,0,0)
6cxxx(0,1/2,1/2,0,1/2)
6dxxx(0,1/2,1/2,0,1/4)
8axxx(1/3,2/3,2/3,1/3,1/4)
8bxxx(2/3,2/3,1/3,1/3,1/2)
12axxx(0,0,1/2,1/2,1/2)
12bxxx(1/2,0,0,1/2,1/4)
4cxxx(0,0,0,0,x)
8cxxx(0,2/3,0,1/3,x)
12cxxx(0,1/2,0,0,x)
12dxxx(0,1/2,1/2,0,x)
16axxx(2/3,2/3,1/3,1/3,x)
24axxx(0,0,1/2,1/2,x)
12exxx(0,x,y,0,1/2)
12fxxx(0,x,y,0,0)
24bxxx(x,y,y,x,1/4)
24cxxx(0,x,y,0,z)
24dxxx(x,y,z,u,1/2)
48axxx(x,y,z,u,v)
48bxxx(x,y,z,u,v)


Table 5: Wyckoff positions of P12mm(125mm)
W.S.site symmetrycoordinates
1axxxx(0,0,0,0,x)
3axxxx(0,1/2,1/2,0,x)
4axxxx(1/3,2/3,2/3,1/3,x)
4bxxxx(0,2/3,0,1/3,x)
6axxxx(0,1/2,0,0,x)
6bxxxx(1/2,0,0,1/2,x)
12axxxx(x,y,y,x,z)
12bxxxx(0,x,y,0,z)
24axxxx(x,y,z,u,v)


Table 6: Wyckoff positions of P12mm(125mm)
W.S.site symmetrycoordinates
2axxxx(0,0,0,0,x)
6axxxx(1/2,0,1/2,1/2,x)
8axxxx(0,2/3,0,1/3,x)
8bxxxx(2/3,2/3,1/3,1/3,x)
12axxxx(0,0,0,1/2,x)
12bxxxx(0,0,1/2,1/2,x)
24axxxx(x,y,z,u,v)


Table 7: Wyckoff positions of P12mm(125mm)
W.S.site symmetrycoordinates
2axxxx(0,0,0,0,x)
4axxxx(0,2/3,0,1/3,x)
6axxxx(0,1/2,0,0,x)
6bxxxx(0,1/2,1/2,0,x)
8axxxx(2/3,2/3,1/3,1/3,x)
12axxxx(0,0,1/2,1/2,x)
12bxxxx(0,x,y,0,z)
24axxxx(x,y,z,u,v)


Table 8: Wyckoff positions of P1222(125mm)
W.S.site symmetrycoordinates
1axxxx(0,0,0,0,0)
1bxxxx(0,0,0,0,1/2)
3axxxx(0,1/2,1/2,0,0)
3bxxxx(0,1/2,1/2,0,1/2)
4axxxx(2/3,2/3,1/3,1/3,0)
4bxxxx(2/3,2/3,1/3,1/3,1/2)
4cxxxx(2/3,0,1/3,0,0)
4dxxxx(2/3,0,1/3,0,1/2)
6axxxx(0,0,1/2,0,0)
6bxxxx(0,0,1/2,0,1/2)
6cxxxx(1/2,0,0,1/2,0)
6dxxxx(1/2,0,0,1/2,1/2)
2axxxx(0,0,0,0,x)
6exxxx(1/2,0,1/2,1/2,x)
8axxxx(0,2/3,0,1/3,x)
8bxxxx(2/3,2/3,1/3,1/3,x)
12axxxx(0,0,0,1/2,x)
12bxxxx(0,0,1/2,1/2,x)
12cxxxx(x,y,−y,−x,0)
12dxxxx(x,y,−y,−x,1/2)
12exxxx(0,y,x,0,0)
12fxxxx(0,y,x,0,1/2)
24axxxx(x,y,z,u,v)


Table 9: Wyckoff positions of P1222(125mm)
W.S.site symmetrycoordinates
24axxxx(x,y,−y,−x,5/8)
12axxxx(0,y,x,0,0)
24bxxxx(x,y,z,u,v)


Table 10: Wyckoff positions of P1222(125mm)
W.S.site symmetrycoordinates
6axxxx(0,0,0,0,0)
6bxxxx(0,0,1/2,0,0)
6cxxxx(0,0,1/2,0,1/2)
6dxxxx(0,1/2,1/2,0,0)
6exxxx(0,0,0,0,1/4)
6fxxxx(1/2,0,0,1/2,1/4)
6gxxxx(1/2,0,0,1/2,3/4)
6hxxxx(0,1/2,1/2,0,1/4)
12axxxx(0,0,0,0,x)
12bxxxx(0,0,0,1/2,x)
12cxxxx(0,0,1/2,1/2,x)
12dxxxx(0,1/2,1/2,0,x)
12exxxx(x,y,−y,−x,1/4)
12fxxxx(x,y,−y,−x,3/4)
12gxxxx(0,y,x,0,0)
12hxxxx(0,y,x,0,1/2)
24axxxx(x,y,z,u,v)


Table 11: Wyckoff positions of P1222(125mm)
W.S.site symmetrycoordinates
4axxxx(0,0,0,0,7/8)
4bxxxx(2/3,2/3,1/3,1/3,7/8)
4cxxxx(2/3,2/3,1/3,1/3,3/8)
4dxxxx(0,0,0,0,0)
4exxxx(2/3,0,1/3,0,0)
4fxxxx(2/3,0,1/3,0,1/2)
8axxxx(0,0,0,0,x)
8bxxxx(0,2/3,0,1/3,x)
8cxxxx(2/3,2/3,1/3,1/3,x)
12axxxx(x,y,−y,−x,7/8)
12bxxxx(0,y,x,0,0)
24axxxx(x,y,z,u,v)


Table 12: Wyckoff positions of P1222(125mm)
W.S.site symmetrycoordinates
3axxxx(0,0,0,0,0)
3bxxxx(0,0,0,0,1/2)
3cxxxx(0,1/2,1/2,0,0)
3dxxxx(0,1/2,1/2,0,1/2)
6axxxx(0,0,1/2,0,0)
6bxxxx(0,0,1/2,0,1/2)
6cxxxx(1/2,0,0,1/2,1/2)
6dxxxx(1/2,0,0,1/2,0)
6exxxx(0,0,0,0,x)
6fxxxx(1/2,0,1/2,1/2,x)
12axxxx(0,0,0,1/2,x)
12bxxxx(0,0,1/2,1/2,x)
12cxxxx(x,y,−y,−x,1/2)
12dxxxx(x,y,−y,−x,0)
12exxxx(0,y,x,0,0)
12fxxxx(0,y,x,0,1/2)
24axxxx(x,y,z,u,v)


Table 13: Wyckoff positions of P1222(125mm)
W.S.site symmetrycoordinates
2axxxx(0,0,0,0,0)
2bxxxx(0,0,0,0,3/4)
4axxxx(2/3,2/3,1/3,1/3,3/4)
4bxxxx(2/3,2/3,1/3,1/3,1/4)
4cxxxx(2/3,0,1/3,0,0)
4dxxxx(2/3,0,1/3,0,1/2)
6axxxx(0,0,1/2,0,0)
6bxxxx(0,0,1/2,0,1/2)
6cxxxx(0,1/2,1/2,0,0)
6dxxxx(1/2,0,0,1/2,3/4)
6exxxx(1/2,0,0,1/2,1/4)
6fxxxx(0,1/2,1/2,0,3/4)
4exxxx(0,0,0,0,x)
8axxxx(0,2/3,0,1/3,x)
8bxxxx(2/3,2/3,1/3,1/3,x)
12axxxx(0,0,0,1/2,x)
12bxxxx(0,0,1/2,1/2,x)
12cxxxx(0,1/2,1/2,0,x)
12dxxxx(x,y,−y,−x,3/4)
12exxxx(x,y,−y,−x,1/4)
12fxxxx(0,y,x,0,0)
12gxxxx(0,y,x,0,1/2)
24axxxx(x,y,z,u,v)


Table 14: Wyckoff positions of P12/m(1251)
W.S.site symmetrycoordinates
1axxxx(0,0,0,0,0)
1bxxxx(0,0,0,0,1/2)
3axxxx(1/2,0,1/2,1/2,0)
3bxxxx(1/2,0,1/2,1/2,1/2)
4axxxx(0,2/3,0,1/3,0)
4bxxxx(0,2/3,0,1/3,1/2)
4cxxxx(2/3,2/3,1/3,1/3,0)
4dxxxx(2/3,2/3,1/3,1/3,1/2)
6axxxx(0,0,0,1/2,0)
6bxxxx(0,0,0,1/2,1/2)
6cxxxx(0,0,1/2,1/2,0)
6dxxxx(0,0,1/2,1/2,1/2)
2axxxx(0,0,0,0,x)
6exxxx(1/2,0,1/2,1/2,x)
8axxxx(0,2/3,0,1/3,x)
8bxxxx(2/3,2/3,1/3,1/3,x)
12axxxx(0,0,0,1/2,x)
12bxxxx(0,0,1/2,1/2,x)
12cxxxx(x,y,z,u,0)
12dxxxx(x,y,z,u,1/2)
24axxxx(x,y,z,u,v)


Table 15: Wyckoff positions of P12/m(1251)
W.S.site symmetrycoordinates
2axxxx(0,0,0,0,0)
2bxxxx(0,0,0,0,3/4)
4axxxx(0,2/3,0,1/3,0)
4bxxxx(0,2/3,0,1/3,1/2)
4cxxxx(2/3,2/3,1/3,1/3,0)
4dxxxx(2/3,2/3,1/3,1/3,1/2)
6axxxx(0,0,0,1/2,0)
6bxxxx(0,0,0,1/2,1/2)
6cxxxx(0,0,1/2,1/2,0)
6dxxxx(0,0,1/2,1/2,1/2)
6exxxx(0,1/2,1/2,0,0)
6fxxxx(1/2,0,1/2,1/2,3/4)
4exxxx(0,0,0,0,x)
8axxxx(0,2/3,0,1/3,x)
8bxxxx(2/3,2/3,1/3,1/3,x)
12axxxx(0,0,0,1/2,x)
12bxxxx(0,0,1/2,1/2,x)
12cxxxx(0,1/2,1/2,0,x)
12dxxxx(x,y,z,u,0)
24axxxx(x,y,z,u,v)


Table 16: Wyckoff positions of P12(125)
W.S.site symmetrycoordinates
1axxxx(0,0,0,0,x)
3axxxx(1/2,0,1/2,1/2,x)
4axxxx(0,2/3,0,1/3,x)
4bxxxx(2/3,2/3,1/3,1/3,x)
6axxxx(0,0,0,1/2,x)
6bxxxx(0,0,1/2,1/2,x)
12axxxx(x,y,z,u,v)


Table 17: Wyckoff positions of P12(125)
W.S.site symmetrycoordinates
12axxxx(x,y,z,u,v)


Table 18: Wyckoff positions of P12(125)
W.S.site symmetrycoordinates
6axxxx(0,0,0,0,x)
6bxxxx(0,0,0,1/2,x)
6cxxxx(0,0,1/2,1/2,x)
6dxxxx(0,1/2,1/2,0,x)
12axxxx(x,y,z,u,v)


Table 19: Wyckoff positions of P12(125)
W.S.site symmetrycoordinates
4axxxx(0,0,0,0,x)
4bxxxx(0,2/3,0,1/3,x)
4cxxxx(2/3,2/3,1/3,1/3,x)
12axxxx(x,y,z,u,v)


Table 20: Wyckoff positions of P12(125)
W.S.site symmetrycoordinates
3axxxx(0,0,0,0,x)
3bxxxx(1/2,0,1/2,1/2,x)
6axxxx(0,0,0,1/2,x)
6bxxxx(0,0,1/2,1/2,x)
12axxxx(x,y,z,u,v)


Table 21: Wyckoff positions of P12(125)
W.S.site symmetrycoordinates
2axxxx(0,0,0,0,x)
4axxxx(0,2/3,0,1/3,x)
4bxxxx(2/3,2/3,1/3,1/3,x)
6axxxx(0,0,0,1/2,x)
6bxxxx(0,0,1/2,1/2,x)
6cxxxx(0,1/2,1/2,0,x)
12axxxx(x,y,z,u,v)


Table 22: Wyckoff positions of P122m(12mm)
W.S.site symmetrycoordinates
1axxxx(0,0,0,0,0)
1bxxxx(0,0,0,0,1/2)
3axxxx(0,1/2,1/2,0,0)
3bxxxx(0,1/2,1/2,0,1/2)
4axxxx(2/3,0,1/3,0,0)
4bxxxx(2/3,0,1/3,0,1/2)
6axxxx(0,0,1/2,0,0)
6bxxxx(0,0,1/2,0,1/2)
2axxxx(0,0,0,0,x)
4cxxxx(1/3,2/3,2/3,1/3,x)
6cxxxx(1/2,0,0,1/2,x)
6dxxxx(0,1/2,1/2,0,x)
8axxxx(0,2/3,0,1/3,x)
12axxxx(0,0,0,1/2,x)
12bxxxx(0,y,x,0,0)
12cxxxx(0,y,x,0,1/2)
12dxxxx(x,y,y,x,z)
24axxxx(x,y,z,u,v)


Table 23: Wyckoff positions of P122m(12mm)
W.S.site symmetrycoordinates
2axxxx(0,0,0,0,3/4)
2bxxxx(0,0,0,0,0)
4axxxx(2/3,0,1/3,0,3/4)
4bxxxx(2/3,0,1/3,0,1/4)
6axxxx(0,0,1/2,0,3/4)
6bxxxx(0,0,1/2,0,1/4)
6cxxxx(0,1/2,1/2,0,3/4)
6dxxxx(1/2,0,1/2,1/2,0)
4cxxxx(0,0,0,0,x)
8axxxx(0,2/3,0,1/3,x)
8bxxxx(2/3,2/3,1/3,1/3,x)
12axxxx(0,0,0,1/2,x)
12bxxxx(0,0,1/2,1/2,x)
12cxxxx(0,1/2,1/2,0,x)
12dxxxx(0,y,x,0,3/4)
12exxxx(0,y,x,0,1/4)
24axxxx(x,y,z,u,v)


Table 24: Wyckoff positions of P12(12)
W.S.site symmetrycoordinates
1axxxx(0,0,0,0,0)
1bxxxx(0,0,0,0,1/2)
3axxxx(1/2,0,1/2,1/2,0)
3bxxxx(1/2,0,1/2,1/2,1/2)
2axxxx(0,0,0,0,x)
4axxxx(0,2/3,0,1/3,x)
4bxxxx(2/3,2/3,1/3,1/3,x)
6axxxx(0,0,0,1/2,x)
6bxxxx(0,0,1/2,1/2,x)
6cxxxx(0,1/2,1/2,0,x)
12axxxx(x,y,z,u,v)

References

[1]
M. ‍Baake, R. ‍Klitzing, and M. ‍Schlottman. Fractally shaped acceptance domains of quasiperiodic square-triangle tilings with dodecagonal symmetry . Physica, A191:554–558, 1992.
[2]
M. ‍Conrad and B. ‍Harbrecht. Structure properties of Ta97Te60 and Ta181Te112, two approximants of a dodecagonal tantalum telluride. In M. ‍Boissieu, J. ‍L. Verger-Gaugry, and R. ‍Currat, editors, Aperiodic ’97, pages 205–209, Singapore, 1998. World Scientific.
[3]
M. ‍Conrad, B. ‍Harbrecht, and F. ‍Kurumeich. Structure Properties of a Dodecagonal Titanium Telluride quasicrystal. In Aperiodic ’97, pages 199–203, Singapore, 1998. World Scientific.
[4]
F. ‍Gähler and J. ‍Rhyner. Equivalence of the generalized grid and projection method for the construction of quasiperiodic tilings. J. Phys., A19:267–277, 1986.
[5]
K. ‍Hayashida, T. ‍Dotera, A. ‍Takano, and Y. ‍Matsushita. Polymeric quasicrystal: mesoscopic quasicrystalline tiling in abc star polymers. Phys. Rev. Lett., 98:195502, 2007.
[6]
C. ‍R. Iacovella, A. ‍K. Keys, and S. ‍C. Glotzer. Self-assembly of soft-matter quasicrystals and their approximants. PNAS, 108:20935–20940, 2011.
[7]
T. ‍Ishimasa, H. ‍U. Nissen, and Y. ‍Fukano. New ordered state between crystalline and amorphous in Ni-Cr particles. Phys. Rev. Lett., 55:511–513, 1985.
[8]
S. ‍Iwami and T. ‍Ishimasa. Dodecagonal quasicrystal in Mn-based quaternary alloys containing Cr, Ni, and Si. Phil. Mag. Lett., 95(4):229–236, 2015.
[9]
D. ‍A. Rabson, N. ‍D. Mermin, D. ‍S. Rokhsar, and D. ‍C. Wright. The space groups of axial crystals and quasicrystals. Rev. Mod Phys., 63:699–733, 1991.
[10]
A. ‍Yamamoto. Dodecagonal Ta-Te quasicrystal and a 5-dimensional model with fractal occupation domains . Acta Crystallogr., A60:142–145, 2004.

This document was translated from LATEX by HEVEA.