AkijiYamamotoYAMAMOTO.Akiji@nims.go.jp National Institute for Materials Science, Tsukuba, Ibaraki, 305, Japan
Wyckoff positions of Space groups for Dihedral quasicrystals II Dodecagonal groups |
Wyckoff positions of dodecagonal space groups are given.
Abstract: Wyckoff positions of five-dimensional dodecagonal space groups are calculated to facilitate the model building and structure analysis of quasicrystals. There are 23 (6 centrosymmetric and 17 non-centrosymmetric) space groups. The orbit of Wyckoff positions are available in the web site (http://wcp-ap.eng.hokudai.ac.jp/yamamoto/)
Dodecagonal quasicrystals (ddQCs) are found in alloys, tellurides and soft matters with differenct scale.[7, 2, 3, 5, 8, 6] They are related with the dodecagonal tiling.[4] In particular triangle-square tiling appear frequently. This has a fractal occupation domains.[1, 10] This simple structure is generated by a fractal OD located at the origin. However, in more complicated structures, ODs may be located at several different Wyckoff positions. In general, the quasi-peiodic arrangement of atom clusters leads to a complecated model consisting of several ODs at different Wyckoff positions. For example, in tantalum tellurides, atom positions are generated by occupation domains which are located at several different Wyckoff positions.[10] All dodecagonal spacegroups are known[9] but their Wyckoff positions are not shown. Therefore, a table of Wyckoff positions will facilitate the modeling of such quasicrystals. In this paper, Wyckoff positions of 5D dodecagonal space groups are shown.
The program Carat implemented in the program package GAP is applied to the dodecagonal space groups. This requires only the matrix representation of the point group and calculates the normalizer for classifies the generated space groups. All the possible space groups in dodecagonal quasicrystals are known and tabulated.[9] However, the known tables are calculated in a different equivalence conditions, where the scaling transformations of the dodecagonal lattice is not taken into account. As a result, the classification is finer than that in the present paper. (The known tables includes more space groups than those in the present paper as discussed later.)
Table 1: The generators of the dodecagonal space groups (excluding those for lattice translations) employed in Tables 2-7. [R12≡ y,z,u,−x+z,v, R21≡ σy≡ x,y−u,x−z,−u,−v,σz=x,y,z,u,−v, I≡ −x,−y,−z,−u,−v, τ0=(0,0,0,0,0),τ1=(0,0,0,0,1)/2, τ2=(0,0,0,0,1)/12, τ3=(0,0,0,0,1)/6, τ4=(0,0,0,0,1)/4, τ5=(0,0,0,0,1)/3] Note that P12122(12522) is equivalent to P12322(12522) and P12222(12522) to P12422(12522) since they are related by the scaling transformation of the decagonal lattice.
Space group generators P12/mmm(1251mm) {R12|τ0},{R21|τ0},{I|τ0} P12/mmc(1251mm) {R12|τ0},{R21|τ1},{I|τ0} P126/mmm(1251mm) {R12|τ1},{R21|τ0},{I|τ0} P12mm(125mm) {R12|τ0},{R21|τ0},{I|τ0} P12mc(125mm) {R12|τ0},{R21|τ1},{I|τ0} P126mm(125mm) {R12|τ1},{R21|τ0},{I|τ0} P12 22(125mm) {R12|τ0},{R21|τ0} P12122(125mm) {R12|τ2},{R21|τ0} P12222(125mm) {R12|τ3},{R21|τ0} P12322(125mm) {R12|τ4},{R21|τ0} P12422(125mm) {R12|τ5},{R21|τ0} P12622(125mm) {R12|τ1},{R21|τ0} P12/m(1251) {R12|τ0},{σz|τ0} P126/m(1251) {R12|τ0},{σz|τ0} P12(125) {R12|τ0} P121(125) {R12|τ2} P122(125) {R12|τ3} P123(125) {R12|τ4} P124(125) {R12|τ5} P126(125) {R12|τ1} P122m(1211mm) {IR12|τ0},{R21|τ0} P122c(1211mm) {IR12|τ0},{R21|τ1} P12(1211) {IR12|τ0}
Table 2: Wyckoff positions of P12/mmm(1251mm)
W.S. site symmetry coordinates 1a xxx (0,0,0,0,0) 1b xxx (0,0,0,0,1/2) 3a xxx (0,1/2,1/2,0,0) 3b xxx (0,1/2,1/2,0,1/2) 4a xxx (1/3,2/3,2/3,1/3,0) 4b xxx (1/3,2/3,2/3,1/3,1/2) 4c xxx (0,2/3,0,1/3,0) 4d xxx (0,2/3,0,1/3,1/2) 6a xxx (0,1/2,0,0,0) 6b xxx (0,1/2,0,0,1/2) 6c xxx (1/2,0,0,1/2,0) 6d xxx (1/2,0,0,1/2,1/2) 2a xxx (0,0,0,0,x) 6e xxx (0,1/2,1/2,0,x) 8a xxx (0,2/3,0,1/3,x) 8b xxx (1/3,2/3,2/3,1/3,x) 12a xxx (1/2,0,0,1/2,x) 12b xxx (0,1/2,0,0,x) 12c xxx (0,x,y,0,0) 12d xxx (0,x,y,0,1/2) 12e xxx (x,y,y,x,0) 12f xxx (x,y,y,x,1/2) 24a xxx (x,y,y,x,z) 24b xxx (0,x,y,0,z) 24c xxx (x,y,z,u,0) 24d xxx (x,y,z,u,1/2) 48a xxx (x,y,z,u,v)
Table 3: Wyckoff positions of P12/mmc(1251mm)
W.S. site symmetry coordinates 2a xxx (0,0,0,0,1/4) 2b xxx (0,0,0,0,0) 6a xxx (0,1/2,1/2,0,1/4) 6b xxx (1/2,0,1/2,1/2,0) 8a xxx (1/3,2/3,2/3,1/3,1/4) 8b xxx (0,2/3,0,1/3,0) 8c xxx (2/3,2/3,1/3,1/3,0) 8d xxx (0,2/3,0,1/3,1/4) 12a xxx (0,0,0,1/2,0) 12b xxx (0,0,1/2,1/2,0) 12c xxx (1/2,0,0,1/2,1/4) 12d xxx (0,1/2,0,0,1/4) 4a xxx (0,0,0,0,x) 12e xxx (1/2,0,1/2,1/2,x) 16a xxx (0,2/3,0,1/3,x) 16b xxx (2/3,2/3,1/3,1/3,x) 24a xxx (0,0,0,1/2,x) 24b xxx (0,0,1/2,1/2,x) 24c xxx (0,x,y,0,1/4) 24d xxx (x,y,y,x,1/4) 24e xxx (x,y,z,u,0) 48a xxx (x,y,z,u,v) 48b xxx (x,y,z,u,v) 48c xxx (x,y,z,u,v)
Table 4: Wyckoff positions of P126/mcm(1251mm)
W.S. site symmetry coordinates 2a xxx (0,0,0,0,1/2) 2b xxx (0,0,0,0,1/4) 4a xxx (0,2/3,0,1/3,1/2) 4b xxx (0,2/3,0,1/3,0) 6a xxx (0,1/2,0,0,1/2) 6b xxx (0,1/2,0,0,0) 6c xxx (0,1/2,1/2,0,1/2) 6d xxx (0,1/2,1/2,0,1/4) 8a xxx (1/3,2/3,2/3,1/3,1/4) 8b xxx (2/3,2/3,1/3,1/3,1/2) 12a xxx (0,0,1/2,1/2,1/2) 12b xxx (1/2,0,0,1/2,1/4) 4c xxx (0,0,0,0,x) 8c xxx (0,2/3,0,1/3,x) 12c xxx (0,1/2,0,0,x) 12d xxx (0,1/2,1/2,0,x) 16a xxx (2/3,2/3,1/3,1/3,x) 24a xxx (0,0,1/2,1/2,x) 12e xxx (0,x,y,0,1/2) 12f xxx (0,x,y,0,0) 24b xxx (x,y,y,x,1/4) 24c xxx (0,x,y,0,z) 24d xxx (x,y,z,u,1/2) 48a xxx (x,y,z,u,v) 48b xxx (x,y,z,u,v)
Table 5: Wyckoff positions of P12mm(125mm)
W.S. site symmetry coordinates 1a xxxx (0,0,0,0,x) 3a xxxx (0,1/2,1/2,0,x) 4a xxxx (1/3,2/3,2/3,1/3,x) 4b xxxx (0,2/3,0,1/3,x) 6a xxxx (0,1/2,0,0,x) 6b xxxx (1/2,0,0,1/2,x) 12a xxxx (x,y,y,x,z) 12b xxxx (0,x,y,0,z) 24a xxxx (x,y,z,u,v)
Table 6: Wyckoff positions of P12mm(125mm)
W.S. site symmetry coordinates 2a xxxx (0,0,0,0,x) 6a xxxx (1/2,0,1/2,1/2,x) 8a xxxx (0,2/3,0,1/3,x) 8b xxxx (2/3,2/3,1/3,1/3,x) 12a xxxx (0,0,0,1/2,x) 12b xxxx (0,0,1/2,1/2,x) 24a xxxx (x,y,z,u,v)
Table 7: Wyckoff positions of P12mm(125mm)
W.S. site symmetry coordinates 2a xxxx (0,0,0,0,x) 4a xxxx (0,2/3,0,1/3,x) 6a xxxx (0,1/2,0,0,x) 6b xxxx (0,1/2,1/2,0,x) 8a xxxx (2/3,2/3,1/3,1/3,x) 12a xxxx (0,0,1/2,1/2,x) 12b xxxx (0,x,y,0,z) 24a xxxx (x,y,z,u,v)
Table 8: Wyckoff positions of P1222(125mm)
W.S. site symmetry coordinates 1a xxxx (0,0,0,0,0) 1b xxxx (0,0,0,0,1/2) 3a xxxx (0,1/2,1/2,0,0) 3b xxxx (0,1/2,1/2,0,1/2) 4a xxxx (2/3,2/3,1/3,1/3,0) 4b xxxx (2/3,2/3,1/3,1/3,1/2) 4c xxxx (2/3,0,1/3,0,0) 4d xxxx (2/3,0,1/3,0,1/2) 6a xxxx (0,0,1/2,0,0) 6b xxxx (0,0,1/2,0,1/2) 6c xxxx (1/2,0,0,1/2,0) 6d xxxx (1/2,0,0,1/2,1/2) 2a xxxx (0,0,0,0,x) 6e xxxx (1/2,0,1/2,1/2,x) 8a xxxx (0,2/3,0,1/3,x) 8b xxxx (2/3,2/3,1/3,1/3,x) 12a xxxx (0,0,0,1/2,x) 12b xxxx (0,0,1/2,1/2,x) 12c xxxx (x,y,−y,−x,0) 12d xxxx (x,y,−y,−x,1/2) 12e xxxx (0,y,x,0,0) 12f xxxx (0,y,x,0,1/2) 24a xxxx (x,y,z,u,v)
Table 9: Wyckoff positions of P1222(125mm)
W.S. site symmetry coordinates 24a xxxx (x,y,−y,−x,5/8) 12a xxxx (0,y,x,0,0) 24b xxxx (x,y,z,u,v)
Table 10: Wyckoff positions of P1222(125mm)
W.S. site symmetry coordinates 6a xxxx (0,0,0,0,0) 6b xxxx (0,0,1/2,0,0) 6c xxxx (0,0,1/2,0,1/2) 6d xxxx (0,1/2,1/2,0,0) 6e xxxx (0,0,0,0,1/4) 6f xxxx (1/2,0,0,1/2,1/4) 6g xxxx (1/2,0,0,1/2,3/4) 6h xxxx (0,1/2,1/2,0,1/4) 12a xxxx (0,0,0,0,x) 12b xxxx (0,0,0,1/2,x) 12c xxxx (0,0,1/2,1/2,x) 12d xxxx (0,1/2,1/2,0,x) 12e xxxx (x,y,−y,−x,1/4) 12f xxxx (x,y,−y,−x,3/4) 12g xxxx (0,y,x,0,0) 12h xxxx (0,y,x,0,1/2) 24a xxxx (x,y,z,u,v)
Table 11: Wyckoff positions of P1222(125mm)
W.S. site symmetry coordinates 4a xxxx (0,0,0,0,7/8) 4b xxxx (2/3,2/3,1/3,1/3,7/8) 4c xxxx (2/3,2/3,1/3,1/3,3/8) 4d xxxx (0,0,0,0,0) 4e xxxx (2/3,0,1/3,0,0) 4f xxxx (2/3,0,1/3,0,1/2) 8a xxxx (0,0,0,0,x) 8b xxxx (0,2/3,0,1/3,x) 8c xxxx (2/3,2/3,1/3,1/3,x) 12a xxxx (x,y,−y,−x,7/8) 12b xxxx (0,y,x,0,0) 24a xxxx (x,y,z,u,v)
Table 12: Wyckoff positions of P1222(125mm)
W.S. site symmetry coordinates 3a xxxx (0,0,0,0,0) 3b xxxx (0,0,0,0,1/2) 3c xxxx (0,1/2,1/2,0,0) 3d xxxx (0,1/2,1/2,0,1/2) 6a xxxx (0,0,1/2,0,0) 6b xxxx (0,0,1/2,0,1/2) 6c xxxx (1/2,0,0,1/2,1/2) 6d xxxx (1/2,0,0,1/2,0) 6e xxxx (0,0,0,0,x) 6f xxxx (1/2,0,1/2,1/2,x) 12a xxxx (0,0,0,1/2,x) 12b xxxx (0,0,1/2,1/2,x) 12c xxxx (x,y,−y,−x,1/2) 12d xxxx (x,y,−y,−x,0) 12e xxxx (0,y,x,0,0) 12f xxxx (0,y,x,0,1/2) 24a xxxx (x,y,z,u,v)
Table 13: Wyckoff positions of P1222(125mm)
W.S. site symmetry coordinates 2a xxxx (0,0,0,0,0) 2b xxxx (0,0,0,0,3/4) 4a xxxx (2/3,2/3,1/3,1/3,3/4) 4b xxxx (2/3,2/3,1/3,1/3,1/4) 4c xxxx (2/3,0,1/3,0,0) 4d xxxx (2/3,0,1/3,0,1/2) 6a xxxx (0,0,1/2,0,0) 6b xxxx (0,0,1/2,0,1/2) 6c xxxx (0,1/2,1/2,0,0) 6d xxxx (1/2,0,0,1/2,3/4) 6e xxxx (1/2,0,0,1/2,1/4) 6f xxxx (0,1/2,1/2,0,3/4) 4e xxxx (0,0,0,0,x) 8a xxxx (0,2/3,0,1/3,x) 8b xxxx (2/3,2/3,1/3,1/3,x) 12a xxxx (0,0,0,1/2,x) 12b xxxx (0,0,1/2,1/2,x) 12c xxxx (0,1/2,1/2,0,x) 12d xxxx (x,y,−y,−x,3/4) 12e xxxx (x,y,−y,−x,1/4) 12f xxxx (0,y,x,0,0) 12g xxxx (0,y,x,0,1/2) 24a xxxx (x,y,z,u,v)
Table 14: Wyckoff positions of P12/m(1251)
W.S. site symmetry coordinates 1a xxxx (0,0,0,0,0) 1b xxxx (0,0,0,0,1/2) 3a xxxx (1/2,0,1/2,1/2,0) 3b xxxx (1/2,0,1/2,1/2,1/2) 4a xxxx (0,2/3,0,1/3,0) 4b xxxx (0,2/3,0,1/3,1/2) 4c xxxx (2/3,2/3,1/3,1/3,0) 4d xxxx (2/3,2/3,1/3,1/3,1/2) 6a xxxx (0,0,0,1/2,0) 6b xxxx (0,0,0,1/2,1/2) 6c xxxx (0,0,1/2,1/2,0) 6d xxxx (0,0,1/2,1/2,1/2) 2a xxxx (0,0,0,0,x) 6e xxxx (1/2,0,1/2,1/2,x) 8a xxxx (0,2/3,0,1/3,x) 8b xxxx (2/3,2/3,1/3,1/3,x) 12a xxxx (0,0,0,1/2,x) 12b xxxx (0,0,1/2,1/2,x) 12c xxxx (x,y,z,u,0) 12d xxxx (x,y,z,u,1/2) 24a xxxx (x,y,z,u,v)
Table 15: Wyckoff positions of P12/m(1251)
W.S. site symmetry coordinates 2a xxxx (0,0,0,0,0) 2b xxxx (0,0,0,0,3/4) 4a xxxx (0,2/3,0,1/3,0) 4b xxxx (0,2/3,0,1/3,1/2) 4c xxxx (2/3,2/3,1/3,1/3,0) 4d xxxx (2/3,2/3,1/3,1/3,1/2) 6a xxxx (0,0,0,1/2,0) 6b xxxx (0,0,0,1/2,1/2) 6c xxxx (0,0,1/2,1/2,0) 6d xxxx (0,0,1/2,1/2,1/2) 6e xxxx (0,1/2,1/2,0,0) 6f xxxx (1/2,0,1/2,1/2,3/4) 4e xxxx (0,0,0,0,x) 8a xxxx (0,2/3,0,1/3,x) 8b xxxx (2/3,2/3,1/3,1/3,x) 12a xxxx (0,0,0,1/2,x) 12b xxxx (0,0,1/2,1/2,x) 12c xxxx (0,1/2,1/2,0,x) 12d xxxx (x,y,z,u,0) 24a xxxx (x,y,z,u,v)
Table 16: Wyckoff positions of P12(125)
W.S. site symmetry coordinates 1a xxxx (0,0,0,0,x) 3a xxxx (1/2,0,1/2,1/2,x) 4a xxxx (0,2/3,0,1/3,x) 4b xxxx (2/3,2/3,1/3,1/3,x) 6a xxxx (0,0,0,1/2,x) 6b xxxx (0,0,1/2,1/2,x) 12a xxxx (x,y,z,u,v)
Table 17: Wyckoff positions of P12(125)
W.S. site symmetry coordinates 12a xxxx (x,y,z,u,v)
Table 18: Wyckoff positions of P12(125)
W.S. site symmetry coordinates 6a xxxx (0,0,0,0,x) 6b xxxx (0,0,0,1/2,x) 6c xxxx (0,0,1/2,1/2,x) 6d xxxx (0,1/2,1/2,0,x) 12a xxxx (x,y,z,u,v)
Table 19: Wyckoff positions of P12(125)
W.S. site symmetry coordinates 4a xxxx (0,0,0,0,x) 4b xxxx (0,2/3,0,1/3,x) 4c xxxx (2/3,2/3,1/3,1/3,x) 12a xxxx (x,y,z,u,v)
Table 20: Wyckoff positions of P12(125)
W.S. site symmetry coordinates 3a xxxx (0,0,0,0,x) 3b xxxx (1/2,0,1/2,1/2,x) 6a xxxx (0,0,0,1/2,x) 6b xxxx (0,0,1/2,1/2,x) 12a xxxx (x,y,z,u,v)
Table 21: Wyckoff positions of P12(125)
W.S. site symmetry coordinates 2a xxxx (0,0,0,0,x) 4a xxxx (0,2/3,0,1/3,x) 4b xxxx (2/3,2/3,1/3,1/3,x) 6a xxxx (0,0,0,1/2,x) 6b xxxx (0,0,1/2,1/2,x) 6c xxxx (0,1/2,1/2,0,x) 12a xxxx (x,y,z,u,v)
Table 22: Wyckoff positions of P122m(12mm)
W.S. site symmetry coordinates 1a xxxx (0,0,0,0,0) 1b xxxx (0,0,0,0,1/2) 3a xxxx (0,1/2,1/2,0,0) 3b xxxx (0,1/2,1/2,0,1/2) 4a xxxx (2/3,0,1/3,0,0) 4b xxxx (2/3,0,1/3,0,1/2) 6a xxxx (0,0,1/2,0,0) 6b xxxx (0,0,1/2,0,1/2) 2a xxxx (0,0,0,0,x) 4c xxxx (1/3,2/3,2/3,1/3,x) 6c xxxx (1/2,0,0,1/2,x) 6d xxxx (0,1/2,1/2,0,x) 8a xxxx (0,2/3,0,1/3,x) 12a xxxx (0,0,0,1/2,x) 12b xxxx (0,y,x,0,0) 12c xxxx (0,y,x,0,1/2) 12d xxxx (x,y,y,x,z) 24a xxxx (x,y,z,u,v)
Table 23: Wyckoff positions of P122m(12mm)
W.S. site symmetry coordinates 2a xxxx (0,0,0,0,3/4) 2b xxxx (0,0,0,0,0) 4a xxxx (2/3,0,1/3,0,3/4) 4b xxxx (2/3,0,1/3,0,1/4) 6a xxxx (0,0,1/2,0,3/4) 6b xxxx (0,0,1/2,0,1/4) 6c xxxx (0,1/2,1/2,0,3/4) 6d xxxx (1/2,0,1/2,1/2,0) 4c xxxx (0,0,0,0,x) 8a xxxx (0,2/3,0,1/3,x) 8b xxxx (2/3,2/3,1/3,1/3,x) 12a xxxx (0,0,0,1/2,x) 12b xxxx (0,0,1/2,1/2,x) 12c xxxx (0,1/2,1/2,0,x) 12d xxxx (0,y,x,0,3/4) 12e xxxx (0,y,x,0,1/4) 24a xxxx (x,y,z,u,v)
Table 24: Wyckoff positions of P12(12)
W.S. site symmetry coordinates 1a xxxx (0,0,0,0,0) 1b xxxx (0,0,0,0,1/2) 3a xxxx (1/2,0,1/2,1/2,0) 3b xxxx (1/2,0,1/2,1/2,1/2) 2a xxxx (0,0,0,0,x) 4a xxxx (0,2/3,0,1/3,x) 4b xxxx (2/3,2/3,1/3,1/3,x) 6a xxxx (0,0,0,1/2,x) 6b xxxx (0,0,1/2,1/2,x) 6c xxxx (0,1/2,1/2,0,x) 12a xxxx (x,y,z,u,v)
This document was translated from LATEX by HEVEA.