1  Wyckoff positions of icosahedral space groups


Table 1: The generators of the icosahedral space groups (excluding those for lattice translations) employed in Tables 2-7. [R51x,w,y,z,u,v, R31y,z,x,w,−u,−v, R21≡ −x,−y,−w,−v,−u,−z, I≡ −x,−y,−z,−u,−v,−w, τ0=(0,0,0,0,0,0),τ1=(1,1,1,1,1,1)/2, τ2=(3,1,1,1,1,3)/4, τ3=(1,0,0,0,0,0)/5, τ4=(0,1,4,2,3,1)/5, τ5=(1,2,0,1,0,2)/10, τ6=(7,6,2,2,2,5)/10, τ7=(9,1,1,1,1,1,1)/10, τ8=(1,9,0,3,5,2)/10,τ9=(0,1,0,0,0,3)/4,τ10=(3,0,1,1,3,2)/4. τ11=(1,3,2,3,3,2)/4,τ12=(0,0,0,0,1,1)/2] Note that the origin is not at the inversion center in Fmxy35 and Pmxy35. The glide planes {σ21|τ} in Fmxy35 and Pmxy35 are given by {I2}{R210} and {I1}{R210}, respectively. (σ21x,y,w,v,u,z.) When the inversion is not on the origin in centrosymmetric space groups, the second setting is given where the origin is at the inversion.
Space groupgenerators
Fm35(m352){R510},{R310},{R210},{I0}
Fmxy35(m352){R510},{R310},{R210},{I2}
(2nd setting){R519},{R3110},{R2111},{I0}
Im35(m352){R510},{R310},{R210},{I0}
Pm35(m352){R510},{R310},{R210},{I0}
Pmxy35(m352){R510},{R310},{R210},{I1}
(2nd setting){R510},{R3112},{R211},{I0}
F235(2352){R510},{R310},{R210}
F2351(2352){R515},{R316},{R210}
I235(2352){R510},{R310},{R210}
I2351(2352){R517},{R318},{R210}
P235(2352){R510},{R310},{R210}
P2351(2352){R513},{R314},{R210}


Table 2: The Wyckoff positions of the space groups Fm35 and Fmxy35. The first column represents Wyckoff symbol (W.S.). The second and third columns denote the site symmetry and the representative coordinates, respectively. In the Wyckoff positions in the second setting in Fmxy35(m35), −τ2/2 shown in Table 1 should be added to the coordinates.
Fm35(m352)
W.S.site symmetrycoordinates
32· 1am35(m352)(0,0,0,0,0,0)
32· 1bm35(m352)(1,0,0,0,0,0)/2
32· 1cm35(m352)(1,1,1,1,1,1)/4
32· 1dm35(m352)(3,1,1,1,1,1)/4
32· 15ammm(mmm)(1,1,1,0,0,1)/4
32· 15bmmm(mmm)(2,0,1,1,1,1)/4
32· 15cmmm(mmm)(2,0,1,0,0,1)/4
32· 15dmmm(mmm)(1,1,0,0,0,2)/4
32· 12a5m(52m)(x,y,y,y,y,y)
32· 20a3m(3m)(x,x,y,−y,y,x)
32· 30a2mm(2mm)(x,x,y,0,0,y)
32· 30b2mm(2mm)(1/4+x,1/4+x,y,1/4,1/4,1/2+y)
32· 30c2mm(2mm)(1/4+x,1/4+x,y,0,0,1/2+y)
32· 30d2mm(2mm)(1/2+x,x,y,1/4,1/4,y)
32· 60am(m)(x+y+z+u,x,y,u,0,z)
32· 120a1(1)(x,y,z,u,v,w)
Fmxy35(m352)
W.S.site symmetrycoordinates
32· 2a235(235)(0,0,0,0,0,0)
32· 2b235(235)(1,1,0,0,0,1)/2
32· 12a5(52)(5,1,1,1,1,5)/8
32· 12b5(52)(3,3,3,3,3,7)/8
32· 20a3(3)(7,3,1,3,1,7)/8
32· 20b3(3)(1,5,3,1,3,1)/8
32· 30a222(222)(1,1,0,1,1,2)/4
32· 30b222(222)(1,1,0,0,0,2)/4
32· 24a5(52)(x,y,y,y,y,y)
32· 40a3(3)(x,x,y,−y,y,x)
32· 60a2(2)(0,0,x,−y,y,−x)
32· 60b2(2)(1/4,1/4,x,−y,y,−x)
32· 120a1(1)(x,y,z,u,v,w)


Table 3: The Wyckoff positions of the space group Im35(m352).
Im35(m352)
W.S.site symmetrycoordinates
2· 1am35(m352)(0,0,0,0,0,0)
2· 6a5m(52m)(1,0,0,0,0,0)/2
2· 6b5m(52m)(1,1,1,1,1,1)/4
2· 6c5m(52m)(3,1,1,1,1,1)/4
2· 10a3m(3m)(1,1,1,0,0,0)/2
2· 10b3m(3m)(1,1,1,3,1,3)/4
2· 10c3m(3m)(1,1,1,1,3,1)/4
2· 12a5m(52m)(x,y,y,y,y,y)
2· 15ammm(mmm)(1,1,0,0,0,0)/2
2· 20a3m(3m)(x,x,x,y,y,y)
2· 30a222(222)(1,3,0,3,3,2)/4
2· 30b222(222)(2,0,3,3,1,1)/4
2· 30c2mm(2mm)(x,x,y,0,0,y)
2· 60am(m)(x,x,0,y,y,0)
2· 120a1(1)(x,y,z,u,v,w)


Table 4: The Wyckoff positions of the space groups Pm35(m352), and Pmxy35(m352). In the Wyckoff positions for the second setting in Pmxy35(m35), −τ1/2 in Table1 should be added to the coordinates.
Pm35(m352)
W.S.site symmetrycoordinates
1am35(m352)(0,0,0,0,0,0)
1bm35(m352)(1,1,1,1,1,1)/2
6a5m(52m)(0,1,1,1,1,1)/2
6b5m(52m)(1,0,0,0,0,0)/2
10a3m(3m)(1,1,0,0,0,1)/2
10b3m(0,0,1,1,1,0)/2
12a5m(52m)(x,y,y,y,y,y)
15ammm(mmm)(0,0,1,0,0,1)/2
15bmmm(mmm)(0,0,1,1,1,1)/2
20a3m(3m)(x,x,y,y,y,x)
30a2mm(2mm)(x,x,y,0,0,y)
30b2mm(2mm)(x,x,y,1/2,1/2,y)
60a2(2)(0,1/2,x,y,−y,−x)
60bm(m)(x,y,z,u,u,z)
120a1(1)(x,y,z,u,v,w)
 
Pmxy35(m352)
WSsite symmetrycoordinates
2a235(2352)(0,0,0,0,0,0)
12a52(522)(0,1,1,1,1,1)/2
12b5(52)(3,3,3,3,3,3)/4
12c5(52)(3,1,1,1,1,1)/4
20a32(32)(1,1,0,0,0,1)/2
20b3(3)(3,3,3,1,3,3)/4
20c3(3)(1,1,3,1,3,1)/4
30a222(222)(0,0,1,0,0,1)/2
24a5(52)(x,y,y,y,y,y)
40a3(3)(x,x,y,−y,y,−x)
60a2(2)(0,0,x,y,−y,−x)
60b2(2)(0,1/2,x,y,−y,−x)
120a1(1)(x,y,z,u,v,w)


Table 5: The Wyckoff positions of the space groups F235(2352) and F2351(2352).
F235
W.S.site symmetrycoordinates
32· 1a235(2352)(0,0,0,0,0,0)
32· 1b235(2352)(1,1,1,1,1,1)/4
32· 1c235(2352)(3,1,1,1,1,1)/4
32· 6a52(522)(1,0,0,0,0,0)/2
32· 12a5(52)(x,y,y,y,y,y)
32· 15a222(222)(0,0,0,1,1,2)/4
32· 15b222(222)(1,1,0,1,1,0)/4
32· 15c222(222)(1,1,0,0,0,0)/4
32· 15d222(222)(1,1,0,1,1,2)/4
32· 20a3(3)(x,x,y,−y,y,x)
32· 30a2(2)(0,0,x,−y,y,−x)
32· 30b2(2)(1/4,1/4,x,−y,+y,1/2−x)
32· 30c2(2)(1/4,1/4,x,1/4−y,1/4+y,1/2−x)
32· 30d2(2)(1/2,0,x,1/4−y,1/4+y,1/2−x)
32· 60a1(1)(x,y,z,u,v,w)
F2351(2352)
W.S.site symmetrycoordinates
32· 5a23(23)(15,5,5,3,7,15)/20
32· 5b23(23)(5,5,0,4,1,5)/10
32· 5c23(23)(0,5,0,4,1,5)/10
32· 5d23(23)(15,5,5,3,7,15)/20
32· 10a32(32)(8,2,0,3,0,5)/10
32· 10b32(32)(11,9,5,1,5,15)/20
32· 10c32(32)(1,9,5,1,5,15)/20
32· 10d32(32)(8,2,0,3,0,5)/10
32· 15a222(222)(11,9,5,1,5,15)/20
32· 15b222(222)(1,9,5,1,5,15)/20
32· 15c222(222)(5,15,5,8,2,15)/20
32· 15d222(222)(0,10,5,8,2,15)/20
32· 20a3(3)(3/5+x,x,y,3/10−y,y,3/10+x)
32· 30a2(2)(0,0,x,−y,y,−x)
32· 30b2(2)(1/4,1/4,x,1/4−y,1/4+y,1/2−x)
32· 30c2(2)(1/4,1/4,x,−y,+y,1/2−x)
32· 60a1(1)(x,y,z,u,v,w)


Table 6: The Wyckoff positions of the space group I235(2352) and I2351(2352). (In the table the symbols ri=i/20, (i=1,5,18,19) are used.)
I235(2352)
W.S.site symmetrycoordinates
2· 1a235(2352)(0,0,0,0,0,0)
2· 6a52(522)(3,1,1,1,1,1)/4
2· 6b52(522)(1,0,0,0,0,0)/2
2· 6c52(522)(1,1,1,1,1,1)/4
2· 10a32(32)(1,1,3,1,3,1)/4
2· 10b32(32)(0,0,1,1,1,0)/2
2· 10c32(32)(1,1,1,3,1,1)/4
2· 12a5(52)(x,y,y,y,y,y)
2· 15a222(222)(1,3,0,3,3,2)/4
2· 15b222(222)(0,0,1,0,0,1)/2
2· 15c222(222)(3,1,0,1,1,2)/4
2· 15d222(222)(2,0,3,3,1,1)/4
2· 15e222(222)(3,1,0,3,3,2)/4
2· 20a3(3)(x,x,x,y,y,y)
2· 30a2(2)(0,0,x,y,−y,−x)
2· 30b2(2)(0,1/2,x,y,−y,−x)
2· 30c2(2)(3/4,1/4,1/4+x,1/4+y,1/4−y,1/4−x)
2· 30d2(2)(1/4,1/4,3/4+x,3/4+y,3/4−y,3/4−x)
2· 60a1(1)(x,y,z,u,v,w)
I2351(2352)
W.S.site symmetrycoordinates
2· 5a23(23)(5,5,19,19,11,11)/20
2· 10a32(32)(19,1,19,11,3,1)/20
2· 10b32(32)(2,3,7,8,9,3)/10
2· 10c32(32)(19,1,9,1,13,1)/20
2· 10d32(32)(2,3,2,3,4,3)/10
2· 15a222(222)(0,0,19,4,16,1)/20
2· 15b222(222)(0,0,9,4,16,11)/20
2· 15c222(222)(15,5,19,9,1,11)/20
2· 15d222(222)(5,5,4,4,6,6)/20
2· 15e222(222)(0,0,19,14,6,1)/20
2· 20a3(3)(r19+x,r1+x,r1+y,r9y,r5+y,r1+x)
2· 30a2(2)(0,0,x,y,−y,−x)
2· 30b2(2)(0,1/2,x,y,−y,−x)
2· 30c2(2)(3/4,1/4,1/4+x,1/4+y,1/4−y,1/4−x)
2· 30d2(2)(1/4,1/4,3/4+x,3/4+y,3/4−y,3/4−x)
2· 60a1(1)(x,y,z,u,v,w)


Table 7: The Wyckoff positions of the space groups P235(2352), and P2351(2352).
P235(2352)
W.S.site symmetrycoordinates
1a235(2352)(0,0,0,0,0,0)
1b235(2352)(1,1,1,1,1,1)/2
6a52(522)(0,1,1,1,1,1)/2
6b52(522)(1,0,0,0,0,0)/2
10a32(32)(1,1,0,0,0,1)/2
10b32(32)(0,0,1,1,1,0)/2
12a5(52)(x,y,y,y,y,y)
15a222(222)(0,0,1,0,0,1)/2
15b222(222)(0,0,1,1,1,1)/2
20a3(3)(x,x,y,−y,y,x)
30a2(2)(0,0,x,y,−y,−x)
30b2(2)(0,1/2,x,y,−y,−x)
30c2(2)(1/2,1/2,x,y,−y,−x)
60a1(1)(x,y,z,u,v,w)
 
P2351(2352)
WSsite symmetrycoordinates
5a23(23)(5,5,9,7,3,1)/10
5b23(23)(0,0,2,1,4,3)/5
10a32(32)(6,4,9,5,1,6)/10
10b32(32)(1,9,9,5,1,1)/10
10c32(32)(3,2,2,0,3,3)/5
10d32(32)(1,9,4,0,6,1)/10
15a222(222)(0,0,9,2,8,1)/10
15b222(222)(0,0,9,7,3,1)/10
20a3(3)(x,4/5+x,y,2/5−y,1/5+y,x)
30a2(2)(0,0,x,y,−y,−x)
30b2(2)(0,1/2,x,y,−y,−x)
30c2(2)(1/2,1/2,x,y,−y,−x)
60a1(1)(x,y,z,u,v,w)


This document was translated from LATEX by HEVEA.